Instructional Improvement Through Collaborative Data Inquiry

CEESA Conference
Warsaw, Poland
March 16-17, 2012

Presenter: Nancy Love
Research for Better Teaching
Acton, Massachusetts, U.S.A.
Instructional Improvement Through Collaborative Data Inquiry

Table of Contents

- Data-Driven Dialogue .. 2
- Sample Grade 6 Mathematics Standards .. 3
- Sim School: Grade 6 Mathematics, Multiple-Choice Item Results, 2012 - Prediction Template .. 5
- Released Items for Patterns, Relations, and Algebra ... 6
- Mathematics: Student Work Samples: Question 34 ... 10
- Reading Standards for Informational Text K-5 ... 17
- Language Standards K-5 .. 18
- English Language Arts Reading Comprehension: Session 1 ... 19
- Sim School: Grade 4 English Language Arts Multiple-Choice Item Results, 2012 - Prediction Template 24
Data-Driven Dialogue

Sample Grade 6 Mathematics Standards

Number Sense and Operations Strand
Students engage in problem solving, communicating, reasoning, connecting, and representing as they:

6.N.1 Demonstrate an understanding of place value to billions and thousandths, e.g., 102, 105.
6.N.2 Demonstrate an understanding of fractions as a ratio of whole numbers, as parts of a collection, and as locations on the number line.
6.N.3 Identify and determine common equivalent fractions, mixed numbers, decimals, and percents.
6.N.4 Find and position integers, fractions, mixed numbers, and decimals (both positive and negative) on the number line.
6.N.5 Compare and order integers (including negative integers), and positive fractions, mixed numbers, decimals, and percents.
6.N.6 Apply number theory concepts—including prime and composite numbers, prime factorization, greatest common factor, least common multiple, and divisibility rules for 2, 3, 4, 5, 6, 9, and 10—to the solution of problems.
6.N.7 Use the number line to model addition and subtraction of integers, with the exception of subtracting negative integers.
6.N.8 Apply the Order of Operations for expressions involving addition, subtraction, multiplication, and division with grouping symbols (×, ÷, +, −).
6.N.9 Demonstrate an understanding of the inverse relationship of addition and subtraction, and use that understanding to simplify computation and solve problems.
6.N.10 Accurately and efficiently add, subtract, multiply, and divide (with double-digit divisors) whole numbers and positive decimals.
6.N.11 Simplify fractions.
6.N.12 Accurately and efficiently add, subtract, multiply, and divide positive fractions and mixed numbers.
6.N.13 Add and subtract integers, with the exception of subtracting negative integers.
6.N.14 Estimate results of computations with whole numbers, and with positive fractions, mixed numbers, decimals, and percents. Describe reasonableness of estimates.

Patterns, Relations, and Algebra Strand
Students engage in problem solving, communicating, reasoning, connecting, and representing as they:

6.P.1 Analyze and determine the rules for extending symbolic, arithmetic, and geometric patterns and progressions, e.g., ABBCCC; 1, 5, 9, 13; 3, 9, 27,
6.P.2 Replace variables with given values and evaluate/simplify, e.g., 2(m) + 3 when m = 4.
6.P.3 If 3 x c = 15, then 1/3 x 3 x c = 1/3 x 15, therefore c = 5.
6.P.4 Represent real situations and mathematical relationships with concrete models, tables, graphs, and rules in words and with symbols, e.g., input-output tables.
6.P.6 Produce and interpret graphs that represent the relationship between two variables in everyday situations.
6.P.7 Identify and describe relationships between two variables with a constant rate of change. Contrast those with relationships where the rate of change is not constant.

Geometry Strand
Students engage in problem solving, communicating, reasoning, connecting, and representing as they:

6.G.1 Identify polygons based on their properties, including types of interior angles, perpendicular or parallel sides, and congruence of sides, e.g., squares, rectangles, rhombuses, parallelograms, trapezoids, and isosceles, equilateral, and right triangles.
6.G.2 Identify three-dimensional shapes (e.g., cubes, prisms, spheres, cones, and pyramids) based on their properties, such as edges and faces.
6.G.3 Identify relationships among points, lines, and planes, e.g., intersecting, parallel, perpendicular.
6.G.4 Graph points and coordinates of points on the Cartesian coordinate plane (all four quadrants).
6.G.5 Find the distance between two points on horizontal or vertical number lines.
6.G.6 Predict, describe, and perform transformations on two-dimensional shapes, e.g., translations, rotations, and reflections.
6.G.7 Identify types of symmetry, including line and rotational.
6.G.8 Determine if two shapes are congruent by measuring sides or a combination of sides and angles, as necessary; or by motions or series of motions, e.g., translations, rotations, and reflections.
6.G.9 Match three-dimensional objects and their two-dimensional representations, e.g., nets, projections, and perspective drawings.

(cont. next page)
Measurement Strand
Students engage in problem solving, communicating, reasoning, connecting, and representing as they:

6.M.1 Apply the concepts of perimeter and area to the solution of problems. Apply formulas where appropriate.

6.M.2 Identify, measure, describe, classify, and construct various angles, triangles, and quadrilaterals. Solve problems involving proportional relationships and units of measurement, e.g., same system unit conversions, scale models, maps, and speed.

6.M.3 Find areas of triangles and parallelograms. Recognize that shapes with the same number of sides but different appearances can have the same area. Develop strategies to find the area of more complex shapes.

6.M.4 Identify, measure, and describe circles and the relationships of the radius, diameter, circumference, and area (e.g., $d = 2r$, $p = C/d$), and use the concepts to solve problems.

6.M.5 Find volumes and surface areas of rectangular prisms.

6.M.6 Find the sum of the angles in simple polygons (up to eight sides) with and without measuring the angles.

Data Analysis, Statistics, and Probability Strand
Students engage in problem solving, communicating, reasoning, connecting, and representing as they:

6.D.1 Describe and compare data sets using the concepts of median, mean, mode, maximum and minimum, and range.

6.D.2 Construct and interpret stem-and-leaf plots, line plots, and circle graphs.

6.D.3 Use tree diagrams and other models (e.g., lists and tables) to represent possible or actual outcomes of trials. Analyze the outcomes.

6.D.4 Predict the probability of outcomes of simple experiments (e.g., tossing a coin, rolling a die) and test the predictions. Use appropriate ratios between 0 and 1 to represent the probability of the outcome and associate the probability with the likelihood of the event.

Adapted from the Massachusetts Department of Elementary and Secondary Education’s Massachusetts Comprehensive Assessment System (MCAS), 2007, www.doe.mass.edu.
Sim School: Grade 6 Mathematics, Multiple-Choice Item Results, 2012 – Prediction Template

Patterns, Relations, and Algebra Strand

<table>
<thead>
<tr>
<th>Item</th>
<th>Type</th>
<th>Standard</th>
<th>Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>MC</td>
<td>6P.2: Symbols</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>MC</td>
<td>6P.7: Change</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>MC</td>
<td>6P.6: Models</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>MC</td>
<td>6P.4: Models</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>MC</td>
<td>6P.6: Models</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>MC</td>
<td>6P.1: P, R, F</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>MC</td>
<td>6P.1: P, R, F</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>MC</td>
<td>6P.5: Models</td>
<td></td>
</tr>
</tbody>
</table>
Released Items for Patterns, Relations, and Algebra

5. What is the value of the expression below when $\Box = 3$?

$$2(\Box) + 5$$

A. 6
B. 7
C. 10
D. 11

16. In which of the following tables do the data show a constant rate of change in the total distance traveled during a four-hour trip?

<table>
<thead>
<tr>
<th></th>
<th>Distance Traveled</th>
<th>Distance Traveled</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time (hours)</td>
<td>Total Distance (miles)</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>230</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Distance Traveled</th>
<th>Distance Traveled</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time (hours)</td>
<td>Total Distance (miles)</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>240</td>
</tr>
</tbody>
</table>
The graph below shows the relationship between distance measured in kilometers and distance measured in miles.

Measures of Distance

Which of the following is closest to the number of miles that is equivalent to 4 kilometers?

A. 1.5 miles
B. 2.5 miles
C. 5.8 miles
D. 6.2 miles

The cost for labor at a car repair center is shown in the table below.

<table>
<thead>
<tr>
<th>Hours</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$60</td>
</tr>
<tr>
<td>2</td>
<td>$120</td>
</tr>
<tr>
<td>3</td>
<td>$180</td>
</tr>
<tr>
<td>4</td>
<td>$240</td>
</tr>
</tbody>
</table>

Based on the data in the table, which of the following expressions represents the total cost, in dollars, of a repair that requires h hours of labor?

A. $h + 60$
B. $h - 60$
C. $h \times 60$
D. $h \div 60$
Mark your answers to multiple-choice questions 32 through 39 in the spaces provided in your Student Answer Booklet. Do not write your answers in this test booklet. You may do your figuring in the test booklet.

32. Each night, Stephanie reads 3 more pages of her book than Michael reads of his book. Which of the following graphs correctly represents the relationship between the number of pages Stephanie reads each night and the number of pages Michael reads each night?

A. [Graph A]
B. [Graph B]
C. [Graph C]
D. [Graph D]
34. A comet passed by Earth in the year 1835. It passes by Earth every 60 years. Based on this information, in which of the following years can the comet be expected to pass by Earth?

A. 2035
B. 2060
C. 2075
D. 2080

36. Which of the following could be the rule used to create the number pattern shown below?

250, 130, 70, 40, 25

A. Subtract 120.
B. Subtract 10; then divide the result by 2.
C. Divide by 2.
D. Divide by 2; then add 5 to the result.

38. Karen purchased a new camera for $60. She also purchased 5 rolls of film. The total cost of the camera and the rolls of film was $90. Karen’s purchase is represented by the equation below. In the equation, f stands for the cost of each roll of film.

\[5f + 60 = 90\]

What was the cost of each roll of film that Karen purchased?

A. $6
B. $12
C. $18
D. $30

Source: Adapted from the Massachusetts Department of Elementary and Secondary Education’s Massachusetts Comprehensive Assessment System (MCAS), 2007, pp. 304, 310, 312, 314, 320, 322. www.doe.mass.edu.
34. A comet passed by Earth in the year 1835. It passes by Earth every 60 years.

Based on this information, in which of the following years can the comet be expected to pass by Earth?

A. 2035
B. 2060
C. 2075
D. 2080

Show your work.

\[
\begin{align*}
60 \times 10 &= 600 \\
2075 \div 60 &= 34.5833 \ldots
\end{align*}
\]

Source: Adapted from the Massachusetts Department of Elementary and Secondary Education's Massachusetts Comprehensive Assessment System (MCAS), 2007, p. 304. www.doe.mass.edu.
34. A comet passed by Earth in the year 1835. It passes by Earth every 60 years.

Based on this information, in which of the following years can the comet be expected to pass by Earth?

A. 2035
B. 2060
C. 2075
D. 2080

Show your work.

\[
\begin{align*}
1835 & + 60 \\
1890 & + 60 \\
1950 & + 60 \\
2010 & + 60 \\
2070 & + 60 \\
2130 & \\
\end{align*}
\]

Source: Adapted from the Massachusetts Department of Elementary and Secondary Education’s Massachusetts Comprehensive Assessment System (MCAS), 2007, p. 304. www.doe.mass.edu.
34. A comet passed by Earth in the year 1835. It passes by Earth every 60 years.

Based on this information, in which of the following years can the comet be expected to pass by Earth?

(A) 2035
B. 2060
C. 2075
D. 2080

Show your work.

\[
\begin{align*}
\frac{1835}{60} + \frac{1815}{60} + \frac{1975}{60} + \frac{2035}{60} = 31 \frac{5}{6} + 30 \frac{5}{6} + 33 \frac{1}{6} + 34 \frac{1}{6} = 129 \frac{7}{6} = 130 \frac{1}{6}
\end{align*}
\]

Source: Adapted from the Massachusetts Department of Elementary and Secondary Education’s Massachusetts Comprehensive Assessment System (MCAS), 2007, p. 304. www.doe.mass.edu.
34. A comet passed by Earth in the year 1835. It passes by Earth every 60 years.

Based on this information, in which of the following years can the comet be expected to pass by Earth?

A. 2035
B. 2060
C. 2075
D. 2080

Show your work.

I looked at the year 1835 and the year 60. So then I compared it to the two and then I saw it above and that is how I got it.
34. A comet passed by Earth in the year 1835. It passes by Earth every 60 years.

Based on this information, in which of the following years can the comet be expected to pass by Earth?

A. 2035
B. 2060
C. 2075
D. 2080

Show your work.
34. A comet passed by Earth in the year 1835. It passes by Earth every 60 years.

Based on this information, in which of the following years can the comet be expected to pass by Earth?

A. 2035
B. 2060
C. 2075
D. 2080

Show your work.

Source: Adapted from the Massachusetts Department of Elementary and Secondary Education’s Massachusetts Comprehensive Assessment System (MCAS), 2007, p. 304. www.doe.mass.edu.
Sample 7

34. A comet passed by Earth in the year 1835. It passes by Earth every 60 years.

Based on this information, in which of the following years can the comet be expected to pass by Earth?

A. 2085
B. 2060
C. 2075
D. 2080

Show your work.

Source: Adapted from the Massachusetts Department of Elementary and Secondary Education’s Massachusetts Comprehensive Assessment System (MCAS), 2007, p. 304. www.doe.mass.edu.
Reading Standards for Informational Text K-5

Grade 3 students:

<table>
<thead>
<tr>
<th>Key Ideas and Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ask and answer questions to demonstrate understanding of a text, referring explicitly to the text as the basis for the answers.</td>
</tr>
<tr>
<td>2. Determine the main idea of a text; recount the key details and explain how they support the main idea.</td>
</tr>
<tr>
<td>3. Describe the relationship between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text, using language that pertains to time, sequence, and cause/effect.</td>
</tr>
</tbody>
</table>

Grade 4 students:

<table>
<thead>
<tr>
<th>Craft and Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. Determine the meaning of general academic and domain-specific words and phrases in a text relevant to a grade 4 topic or subject area.</td>
</tr>
<tr>
<td>5. Use text features and search tools (e.g., key words, sidebars, hyperlinks) to locate information relevant to a given topic efficiently.</td>
</tr>
</tbody>
</table>

Grade 5 students:

<table>
<thead>
<tr>
<th>Integration of Knowledge and Ideas</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. Distinguish their own point of view from that of the author of a text.</td>
</tr>
<tr>
<td>7. Use information gained from illustrations (e.g., maps, photographs) and the words in a text to demonstrate understanding of the text (e.g., where, when, why, and how key events occur).</td>
</tr>
</tbody>
</table>

Source:

<table>
<thead>
<tr>
<th>Knowledge of Language</th>
<th>Vocabulary Acquisition and Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 3 students:</td>
<td>Grade 4 students:</td>
</tr>
<tr>
<td>Use knowledge of language and its conventions when writing, speaking, reading, or listening.</td>
<td>Use knowledge of language and its conventions when writing, speaking, reading, or listening.</td>
</tr>
<tr>
<td>a. Choose words and phrases for effect.</td>
<td>a. Choose words and phrases to convey ideas precisely.</td>
</tr>
<tr>
<td>b. Recognize and observe differences between the conventions of spoken and written standard English.</td>
<td>b. Choose punctuation for effect.</td>
</tr>
<tr>
<td>c. Differentiate between contexts that call for formal English (e.g., presenting ideas) and situations where informal discourse is appropriate (e.g., small-group discussion).</td>
<td>c. Determine or clarify the meaning of unknown and multiple-meaning word and phrases based on grade 4 reading and content; choosing flexibly from a range of strategies.</td>
</tr>
<tr>
<td>Grade 5 students:</td>
<td>Grade 5 students:</td>
</tr>
<tr>
<td>Grade 5 students:</td>
<td>Grade 5 students:</td>
</tr>
</tbody>
</table>

The bases are loaded with two outs in the bottom of the ninth. The home team is down by one run. The pitcher looks in at his catcher for the sign. The batter digs his back foot in the dirt in the batter’s box. All eyes are on the field.

But while the fans focus on the players, the action on the field isn’t the only action happening in the park. Behind the scenes, another team is at work. Although these players don’t wear uniforms, their play is almost as important to the atmosphere of the game as that of the slugger who comes up with the game-winning hit.

Hours before the game, the park’s “second” team is busy preparing for game time. Grass needs to be cut, highlights from the previous night’s game need to be prepared, and Fenway Franks (hot dogs) need to be steamed and made ready to eat. Throughout the night, it is the support staff’s job to keep the fans informed and entertained.

Most Red Sox fans agree that Fenway Park, built in 1912 and one of the oldest parks in the country, is an exciting place to watch the game. Its small size (it takes only about 35,000 people to fill the seats) gives fans the feeling of being right on top of the game. However, the play of their beloved team is only one reason that fans keep filing into the park. The entire park experience makes a trip to Fenway Park a special event.

The first thing most fans notice when they enter Fenway Park is the towering left-field wall known as the Green Monster. At 37 feet high, the wall can be either a hitter’s best friend (by turning a routine fly ball out into a hit) or his nemesis (turning a sure home run into a long single).

A manual scoreboard takes up much of the face of the Green Monster. While most of today’s ballparks rely on only computer-operated scoreboards, Fenway’s manual scoreboard is part of Fenway’s charm.
“It’s the first thing most fans look at,” says Chris Elias, who has been in charge behind the Green Monster for more than 14 seasons.

Which means that Elias and his two helpers must stay on their toes. If one of them puts up the wrong number, the crowd is quick to let them know. Although keeping score of one baseball game might seem easy, consider that the men also continually need to update the out-of-town scores for all other games going on in both the National and American Leagues. (They keep track of the other games via a laptop with Internet access.) Most Sox fans would consider the manual scoreboard job a dream job. However, like any job, it can get tedious. Rain delays are the worst—the guys just hope that someone brought a newspaper. Inside the cramped Monster, it can get very hot on summer days. And a bathroom? Not in the Green Monster.

However, all it takes is one great play or a clutch hit to remind the men that they are lucky to be part of the Fenway team.

“This is the best summer job I ever had,” says Garrett Tingle, who began working the scoreboard during the 2003 season. “We get to see things that fans watching on TV don’t get to see.”

For the most part, the players are nice, the men say. A few, usually the left fielder, will come to the scoreboard and talk to them through the holes in the wall. The walls inside the Monster are covered with autographs of players, reporters, and fans who have been lucky enough to get a peek inside the wall.

Most of today’s fans, however, need more than the manual scoreboard to entertain them throughout the game. When there is a lull in action or the game is between innings, most fans’ eyes will shift to the huge Jumbo-tron-screen located above the bleacher seats in center and right field.

Fenway Ambassador Kelly Barons says that one of the favorite parts of her job is selecting the honorary batgirl and batboy for the night’s game. Barons was featured on ESPN’s “Plays of the Night” for a great snag of a foul ball during a 2004 game.
Throughout the game, the fans can watch replays from the current game (although controversial plays are avoided so as to not show up the umpires), play trivia games (one of the most popular is guessing the night’s attendance), or even catch a glimpse of themselves as the camera scans the stands for enthusiastic fans.

Closely related to the Jumbo-tron is the music. It is the job of the ballpark “DJ” to keep the crowd upbeat and into the game, even if the home team is losing. Fans who visit the ballpark regularly know when to expect *Sweet Caroline* by Neil Diamond to come blasting out of the speakers (the middle of the eighth inning). Fans will also start to realize that they can tell who is next to come to bat by the music playing.

Megan Kaiser, who controlled the music for most of the team’s 2004 season, says that most players pick their own songs. That right is reserved for members of the Red Sox only—visiting players get whatever Kaiser feels like playing—who call it part of home field advantage.

Fenway Park has seen many changes in its 90-plus years, but one thing remains the same: Fans continue to visit the historic ballpark to cheer on the old town team.

Source: Adapted from the Massachusetts Department of Elementary and Secondary Education’s Massachusetts Comprehensive Assessment System (MCAS), 2008. www.doe.mass.edu.
1. In paragraph 3, why are the Fenway Park workers called “the park’s ‘second’ team”?
 A. because many of them work at other ballparks
 B. because many of them are hoping to become Red Sox players
 C. because they can take the place of Red Sox players
 D. because they play an important role in operating the ballpark

2. According to the article, what makes the scoreboard at Fenway Park different from scoreboards at other major league ballparks?
 A. The scores are changed by hand.
 B. The scores are always kept current.
 C. The scoreboard has a giant television screen.
 D. The scoreboard shows scores for all the baseball games.

3. Based on information in the article, what helps the scoreboard workers feel fortunate to be part of the staff at Fenway Park?
 A. the chance to track other games being played
 B. the chance to watch replays before the fans do
 C. the chance to watch the game on a laptop computer
 D. the chance to experience the ballpark differently than the fans do

4. What are paragraphs 13 and 14 mostly about?
 A. things that keep fans amused during a game
 B. types of problems experienced during a game
 C. reasons workers enjoy working at the ballpark
 D. ways in which the giant television screen helps players

5. Read the sentence from paragraph 14 in the box below.
 Fans who visit the ballpark regularly know when to expect Sweet Caroline by Neil Diamond to come blasting out of the speakers (the middle of the eighth inning).
 Why does the author use the word “blasting” in the sentence?
 A. to show how loud the song is
 B. to show how popular the song is
 C. to show how long the song plays
 D. to show how often the song plays
Read the sentence from paragraph 5 in the box below.

At 37 feet high, the wall can be either a hitter’s best friend (by turning a routine fly ball out into a hit) or his nemesis (turning a sure home run into a long single).

Which of the following words means the same as nemesis?
A. team
B. enemy
C. ballpark
D. scoreboard

In paragraph 8, what does the author mean when she writes that the scoreboard helpers “must stay on their toes”?

A. The helpers must be able to see.
B. The helpers must work together.
C. The helpers must always pay attention.
D. The helpers must always work quietly.

Question 8 is an open-response question.

- Read the question carefully.
- Explain your answer.
- Add supporting details.
- Double-check your work.

Write your answer to question 8 in the space provided in your Student Answer Booklet.

Based on the article, what do Fenway Park workers do to help fans have an enjoyable experience at the ballpark? Support your answer with important details from the article.
<table>
<thead>
<tr>
<th>Item</th>
<th>Type</th>
<th>CC Standard</th>
<th>Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MC</td>
<td>IT: Key Ideas: 4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>MC</td>
<td>IT: Key Ideas: 1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>MC</td>
<td>IT: Key Ideas: 1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>MC</td>
<td>IT: Key Ideas: 2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>MC</td>
<td>IT: Craft/Structure: 4</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>MC</td>
<td>L: Vocabulary: 4</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>MC</td>
<td>L: Figurative: 5</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>OR</td>
<td>IT: Key Ideas: 1</td>
<td></td>
</tr>
</tbody>
</table>

Sim School: Grade 4 English Language Arts, Multiple-Choice Item Results, 2012 – Prediction Template

Common Core Standards for E.LA: Informational Text (IT) and Language (L)